
Reliability-Aware Training and Performance Modeling for
Processing-In-Memory Systems

Hanbo Sun⇤, Zhenhua Zhu⇤, Yi Cai⇤, Shulin Zeng, Kaizhong Qiu, Yu Wang, Huazhong Yang
Dept. of EE, BNRist, Tsinghua University

yu-wang@tsinghua.edu.cn

ABSTRACT
Memristor based Processing-In-Memory (PIM) systems give al-

ternative solutions to boost the computing energy e�ciency of
Convolutional Neural Network (CNN) based algorithms. However,
Analog-to-Digital Converters’ (ADCs) high interface costs and the
limited size of the memristor crossbars make it challenging to map
CNN models onto PIM systems with both high accuracy and high
energy e�ciency. Besides, it takes a long time to simulate the per-
formance of large-scale PIM systems, resulting in unacceptable
development time for the PIM system. To address these problems,
we propose a reliability-aware training framework and a behavior-
level modeling tool (MNSIM 2.0) for PIM accelerators. The proposed
reliability-aware training framework, containing network split-
ting/merging analysis and a PIM-based non-uniform activation
quantization scheme, can improve the energy e�ciency by reducing
the ADC resolution requirements in memristor crossbars. Moreover,
MNSIM 2.0 provides a general modeling method for PIM architecture
design and computation data �ow; it can evaluate both accuracy
and hardware performance within a short time. Experiments based
on MNSIM 2.0 show that the reliability-aware training framework
can improve 3.4⇥ energy e�ciency of PIM accelerators with little
accuracy loss. The equivalent energy e�ciency is 9.02 TOPS/W,
nearly 2.6⇠4.2⇥ compared with the existing work. We also evaluate
more case studies of MNSIM 2.0, which help us balance the trade-o�
between accuracy and hardware performance.

1 INTRODUCTION
In recent years, Convolutional Neural Network (CNN) based al-

gorithms have made breakthrough improvements in various �elds.
However, besides the high accuracy, the CNN-based algorithms
su�er from a massive amount of network parameters and computa-
tions caused by the complex network structure, making CNN-based
algorithms consume high energy and a long computation time.

Existing researches show that compared with ASIC and GPU
solutions, the emerging memristors (e.g., RRAM, Resistive Random
AccessMemory) andmemristor-based Processing-In-Memory (PIM)
architecture can improve the computing performance and energy
e�ciency of CNN by more than 100⇥ [7]. The PIM system’s perfor-
mance improvement comes from the memristor crossbar structure,
which can perform Matrix Vector Multiplications (MVMs) in mem-
ory. When applying the input voltage vector onto the word-lines
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(WLs) of the memristor crossbar and mapping the weight matrix to
the memristor conductance, we can obtain the MVM results from
the current/voltage on the bit-lines (BLs) by using Analog-to-Digital
Converters (ADCs). Therefore, the PIM system can eliminate the
weight data movements between memory and computing units in
traditional von Neumann architectures, which are also the most
time- and energy-consuming part of CNN models.

However, utilizing PIM systems to accelerate CNN models is
still challenging. On the one hand, on account of the high interface
costs of ADCs and the limited size of the memristor crossbars, di-
rectly mapping the CNN models onto the PIM system will cause
undesirable energy consumption and accuracy loss for three rea-
sons. Firstly, PIM accelerators based on high-resolution ADCs can
achieve low accuracy loss even in large scale datasets and com-
plicated CNN models. However, high-resolution ADCs cost more
energy than low-resolution ADCs (e.g., for one conversion, the
8-bit ADC in [5] consumes 8.66⇥ more energy than the 4-bit ADC
in [24]). Since over 60% energy of the entire PIM accelerators is
consumed by the ADCs [33], high-resolution ADCs seriously ruin
the system’s overall energy e�ciency. Secondly, to improve the
overall energy e�ciency, existing studies have proposed several
PIM architectures with low-resolution ADCs. However, these ar-
chitectures have undesirable accuracy loss in large scale datasets
or complex CNN models (e.g., Utilizing 4-bit ADCs results in 8%
accuracy loss on ResNet18 @ cifar10 [3]). Thirdly, On account of
the immature technology and non-ideal factors (e.g., IR-drop), the
memristor crossbar can only be manufactured with limited size
(e.g., 128⇥128). And the limited size makes it inevitable to split the
large weight matrix into multiple memristor crossbars, resulting
in extra energy consumption and accuracy loss. Therefore, how
to reduce the ADCs’ resolution further, while ensuring the com-
puting accuracy within limited memristor crossbar size, is of great
importance for improving the overall energy e�ciency of the PIM
accelerators.

On the other hand, the vast architecture search space and the
complicated CNNmodels in the PIM accelerators cause a long SPICE
simulation time, resulting in an unacceptable long development
time for the iteration of design, simulation, and updating [31]. To
tackle this problem, existing studies have proposed several behavior-
level simulators or modeling frameworks to evaluate the accuracy
or energy e�ciency within a short time [12, 22, 31]. MNSIM [31] is
a behavior-level simulator, which provides a hierarchical hardware
structure abstraction to deploy di�erent CNN models. Although
the crossbars’ data �ow can be quickly evaluated in MNSIM, it lacks
simulation of other digital parts in PIM accelerators. Besides, the
accuracy simulation of MNSIM is only applicable to MVMs of a
single crossbar other than the entire CNN model. NeuroSim [25] is
a circuit-level simulator which provides detailed device- and circuit-
level evaluations, but it lacks �exibility in supporting various CNN
structures at the algorithm level. DL-RSIM [22] and PytorX [12]
are PIM simulators to evaluate the accuracy of the target CNN



models considering device non-ideal factors. However, hardware
simulation is missed in these tools.

To fully exploit the energy e�ciency and performance of PIM-
based CNN accelerators, we propose a reliability-aware training
framework and a behavior-level modeling tool (MNSIM 2.0) for PIM
accelerators. For the former one, the proposed reliability-aware
training framework contains the network splitting/merging analy-
sis and a PIM-based non-uniform activation quantization scheme,
which can reduce the ADC resolution requirements in splitting
crossbars and improve the energy e�ciency of the PIM systems.
For the latter one, to evaluate both hardware performance and test
accuracy within a short time, the proposed behavior-level modeling
framework designs the base architecture and constructs a hardware
performance modeling �ow.

The main contributions of this paper are listed as follows:
(1) We propose a reliability-aware training framework, contain-

ing network splitting/merging analysis and a PIM-based non-
uniform activation quantization scheme. By reducing the
ADC resolution by 2 bits, the proposed training framework
achieves 70% energy consumption reduction and comparable
accuracy to traditional activation quantization schemes.

(2) We propose MNSIM 2.0, a behavior-level modeling framework
that can simulate the accuracy of CNN models considering
data splitting strategies and ADC resolutions, and generate
the corresponding hardware performance.

(3) Experiments based on MNSIM 2.0 show that the reliability-
aware training framework can improve 3.4⇥ energy e�-
ciency of PIM accelerators with little accuracy loss. Besides,
more case studies of MNSIM 2.0 are evaluated, which help
us to balance the trade-o� between accuracy and hardware
performance.

2 PRELIMINARY
2.1 Convolutional Neural Network

The convolutional (CONV) layer is the main component of a typ-
ical CNN model. CONV layers perform the convolution operation,
which is shown as:

�> (G,~, I)=f (
 �1’
8=0

 �1’
9=0

⇠8=’
:=1

�8 (G+8,~+ 9,:)FI (8, 9,:)) (1)

where �8 and �> denote the 3-dimensional input and output data,
respectively. FI is the IC⌘ 3-dimensional convolution weights.  
and ⇠8= represent the kernel size and the input channel of the IC⌘
weights, respectively. By multiplying the corresponding elements
and then summing, we can get the intermediate result in (G,~, I).
Then, we use f (·), a nonlinear activation function, to transfer the
intermediate result to the �nal output activation �> (G,~, I).
2.2 Memristor Basics

Memristors can store information by changing the resistance
values and have the advantage of non-volatility. By combining
memristors in the form of crossbar structure, we can achieve high-
density storage and in-situ computing (e.g., MVM, CONV) together.
To realize e�cient MVMs, we represent the input vector by voltages
V applied onto the WLs of crossbars, and leverage the conductance
of memristor to store the weight matrix. Then the MVM results can
be derived by the output current vector I on BLs:

8>DC,: =
#’
9=1

6:, 9E8=, 9 (2)

where E8=, 9 , 8>DC,: denote the 9C⌘ element of the input voltage vec-
tor V and the :C⌘ element of the output current vector I; 6:, 9 is
the conductance of the (8, 9) cell in the crossbar. Due to the MVMs
are computed in the analog domain, some interfaces to transfer
information between the analog domain and the digital domain
(e.g., Analog-to-Digital Converters (ADCs), Digital-to-Analog Con-
verters (DACs)) are indispensable in the PIM system.

Bene�t from the in-situ MVM computing pattern, the memristor
crossbar-based PIM systems can achieve high energy e�ciency by
eliminating the matrix data movements.

3 COMPUTING RELIABILITY OF
PROCESSING-IN-MEMORY SYSTEMS

Although high energy e�ciency can be obtained in PIM systems,
various non-ideal factors cause computation deviation and make
the PIM-based CNN computing system inaccurate and unreliable.
These non-ideal factors include two aspects: circuit-level non-ideal
factors and device faults.

The circuit-level non-ideal factors can be divided into two cate-
gories, i.e., the impact of interconnections [9] and the quantization
error caused by DACs/ADCs [33]. As the technology node scales
down, the parasitic parameters caused by interconnections show
negative impact on computing accuracy. To be speci�c, wire re-
sistance, IR drop, and sneak path will disturb the value of stored
weight (i.e., conductance), input activation (i.e., input voltage), and
MVMs’ results (i.e., bit-line current), respectively. Existing work
adapts circuits optimization [10], technological exploration [9], and
circuits modeling and network retraining [12] to tackle these prob-
lems. Since memristor perform MVMs in the analog domain, DACs
and ADCs are needed for data conversion. Researchers have ana-
lyzed the e�ect of quantization error on calculation accuracy and
energy consumption [33]. However, there still lacks interface opti-
mization methods to optimize the interface costs while reducing
the accuracy loss for complex data sets and algorithm models.

Because of the immature technologies, memristor device faults
may occur during both chip fabrication (static faults) and mem-
ory read/write (dynamic faults). The device faults can be further
classi�ed as soft faults and hard faults. For the soft faults, the resis-
tance of memristor is still changeable, while the actual resistance
is not equal to the expected one. The typical soft faults include
write variation [32], read disturbance [20], and non-linear resis-
tance distribution [19]. For the hard faults, the resistance of mem-
ristor cannot be tuned. This category includes stuck-at-0 (SA0) and
stuck-at-1 (SA1) faults on account of limited endurance [1] and
fabrication defect [4]. Researchers have proposed series of fault
tolerance methods for device faults to rescue the computation ac-
curacy, containing resistance calibration [20], weight remapping
[13, 30], and algorithm-hardware co-optimization [2, 6, 30].

In this paper, to implement reliable and energy e�cient PIM sys-
tems, we focus on optimizing the interface-level non-ideal factors
(i.e., ADCs’ quantization error) and provide a PIM system perfor-
mance and accuracy evaluation tool considering di�erent non-ideal
factors for e�cient design space exploration.
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Figure 1: Accuracy of VGG16 on ImageNet dataset under dif-
ferent crossbar size and ADC resolution con�gurations.

4 RELIABLE-AWARE TRAINING
FRAMEWORK

Many hardware parameters have crucial impacts on accuracy
and energy e�ciency of PIM systems, e.g., interface resolution and
crossbar size. However, existing training frameworks designed for
CMOS-based accelerators ignore these parameters’ in�uence, re-
sulting in undesirable accuracy loss when mapping well-trained
CNN models onto PIM systems. To tackle this problem, we propose
a reliable-aware training framework for PIM systems, which can
achieve negligible accuracy loss while further improving the en-
ergy e�ciency of PIM systems. The proposed training framework
utilizes weight matrix splitting, quantization range optimization,
high-precision scale implementation, and non-uniform quantiza-
tion to integrate hardware parameters into the CNN training.

4.1 Splitting & Quantization Analysis
On account of the limited crossbar size, we split and allocate the

large convolutional layer in CNN models into multiple crossbars.
Correspondingly, the convolutional operations are also divided
into multiple sub-MVM blocks. In this scenario, we get the sub-
MVM results from each crossbar and accumulate them through the
adder tree to obtain the �nal result, as shown in Figure 5. However,
this computational data �ow introduces two sources of calculation
deviation. On the one hand, limited by the resolution of ADCs,
the high precision analog MVM results on BLs will be quantized,
bringing quantization error. On the other hand, the accumulation
operation expands the bit width of the intermediate data, and the
�nal results need to be clipped. Existing training frameworks ignore
the in�uence of these deviation sources, resulting in undesirable
accuracy loss. As shown in Figure 1, the test accuracy substantially
drops when directly mapping the models onto the size-limited
crossbars with low ADC resolution. In our training framework, we
model these calculation deviation sources and integrate them into
the CNN training �ow, which are shown as follows:

� (F , G) = ⇠;8? (
#’
8=1

&D0=(� (F8 , G8 ))) (3)

where ⇠;8? (·) and &D0=(·) denote the clipping and quantization
function, respectively. F8 and G8 means the weights and input in
the 8C⌘ sub-MVM block, and # is the number of sub-MVM blocks.
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Figure 2: (a) The percentage of activation in di�erent ranges
w.r.t. di�erent CNN layers in a well-trained VGG-8 model.
(b) The quantization range sizes in di�erent layers [27].
4.2 Quantization Range Optimization

In traditional quantization schemes, we utilize the maximum
value of the input data as the quantization range. Although this
broad quantization range can cover all the input data, the maximum
value is easily a�ected by occasional extreme data and can not
re�ect the overall data distribution. As shown in Figure 2(a), the
interval [0,<0G/4] covers more than 95% activation data, meaning
most of the data does not use the highest two bits. Referring to [21],
the weights and the activation data in CNNmodels can be described
by a Gaussian distribution. Therefore, we propose a quantization
range optimization method to generate appropriate quantization
range based on 3f principle, which can cover more than 99.7%
normal data appears in [` � 3f, ` + 3f], as shown below:

U  |<40=(E8=) | + 3BC3 (E8=) (4)
where E8= denotes the input data, and U is the quantization range.
As shown in Figure 2, the new quantization range can cover more
than 97% data, while the quantization range size is reduced to 25%
after using the optimized quantization range. Simultaneously, by
truncating the data beyond the quantization range for training, we
can also guarantee the training accuracy in this quantization range.

4.3 High-precision Scale Implementation
Limited by the binary system in the digital circuit, the scaling fac-

tor in the traditional quantization method must be an integer power
of 2. However, this constraint leads to a mismatch between the scal-
ing factor and the quantization range, which further damages the
quantization precision and leads to an increase in the quantization
errors. To solve this problem, we propose a high-precision scale
implementation scheme based on PIM. The proposed method uti-
lizes memristor with adjustable resistance instead of resistor as the
load resistance. Therefore, we can scale and map di�erent ranges of
currents to one �xed voltage range by adjusting the load resistance,
which is equivalent to achieving high precision scaling factors.

Besides, in a typical CNN training phase, only part of the data is
trained each time due to the storage limitation. There are di�erent
data distributions among di�erent data, resulting in various scaling
factors and non-convergence during training. To tackle this prob-
lem, we introduce the momentum smoothing method to balance
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Figure 3: Quantization error under di�erent quantization
methods (i.e., 4-bit uniform quantization, 5-bit uniform
quantization, and 4-bit non-uniform quantization) [27].

di�erent data distributions and accelerate training convergence. Af-
ter a new quantization scaling parameter is generated, it is weighted
summed with the previous scaling parameter. Then we can get a
smoothed quantization scaling parameter, as shown in Equation 5
(< denotes the momentum coe�cient).

U  <U + (1 �<) ( |<40=(E8=) | + 3BC3 (E8=)) (5)

4.4 Non-uniform Quantization
As mentioned before, the activation data in CNN models is

close to the Gaussian distribution. Therefore, when using tradi-
tional uniform quantization schemes to quantify the activation
data, �xed quantization step brings large quantization error on the
data-intensive interval. A straightforward solution is to adjust the
quantization step (i.e., non-uniform quantization) according to the
data density. As shown in Figure 3, under the same quantization
bits, non-uniform quantization can achieve smaller quantization
error. Inspired by this observation, we realize the non-uniform
quantization by non-uniform ADCs in our quantization scheme.
At the circuit level, by adjusting the capacitance and the divider
resistance value in ADCs, we can generate non-uniform reference
voltage levels and realize the non-uniform quantization with lit-
tle area and energy overhead. Correspondingly, at the algorithm
level, to achieve non-uniform quantization, we utilize nonlinear
functions (e.g., Sigmoid) to determine the quantization step. After
that, we use multiplexers to transfer low-precision non-uniform
quantization results to high-precision uniform quantization data.
Combining these two parts, our method can be expressed as:
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where 5 , A , and & denote the B86<>83 , A>D=3 , and uniform quanti-
zation function, respectively. [ is a hyperparameter used to adjust
the distribution.

5 HARDWARE PERFORMANCE MODELING
In addition to the impact on accuracy, various hardware design

parameters (e.g., crossbar size, ADC resolution, etc.) also a�ect
hardware area, performance, and energy e�ciency. However, the
huge design space and large-scale PIM circuits make the SPICE sim-
ulation time unacceptable. For the purpose of e�cient design space
exploration and CNN accuracy evaluation, we propose MNSIM 2.0
to model the performance of PIM systems. In the entire design �ow,
users provide CNN models and basic architecture design as inputs.
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Figure 4: Left: The architecture design used for PIM systems;
Right: Details of the Data Forwarding Unit, the Memristor
Tile, the Process Element (PE), and the Joint Module [34].

Then, MNSIM 2.0 generates the hardware modeling results and CNN
computing accuracy, which can be used to guide users to adjust the
architecture design parameters. Once the hardware parameters are
determined, the reliable-aware training framework can be utilized
to optimize the CNN accuracy deployed on PIM systems.

5.1 Hierarchical Structure for PIM
In order to support complicated CNN models and describe di�er-

ent PIM architectures, we propose a hierarchical modeling structure
and a basic architecture design, as shown in Figure 4. At the system
level, the proposed architecture consists of the host CPU, o�-chip
DRAM, and a memristor-based CNN accelerator. The host CPU
controls the weight mapping in the CNN deployment phase and
wakes up the accelerator in the compute phase. At runtime, the ac-
celerator reads input data from DRAM and uses the on-chip bu�er
to store all the intermediate data. After the accelerator completes
the inference calculation, the result will be written back to DRAM.
Inside the memristor-based CNN accelerator, there exist a global
bu�er, a global accumulator, and several memristor banks. The
global bu�er and global accumulator store the intermediate data
and wait for other data to calculate the element summation layer to
support the bypass network structure. From high-level to low-level,
the hierarchical structure consists of memristor banks, memristor
tiles, processing elements (PEs), and memristor crossbars. For each
memristor bank, we organize a memristor tile array and connect
them in a similar way to Network-on-Chip (NoC). In this connec-
tion scheme, each memristor tile is adjacent to the data forwarding
unit, which receives data from other tiles, merges the intermediate
data, and outputs the result to the local tile or other tiles. And inside
the memristor tile, several PEs are connected as an H-tree structure
to merge the result of this tile in joint modules.

5.2 Data Flow Construction
Based on the basic architecture design, we analyze the data �ow

of each memristor bank, as shown in Figure 5. The entire data �ow
consists of three parts:

1. Input data �ow (the cyan-blue arrow): we get the input data
from the data forwarding unit and write the data into the PEs’
activation bu�ers through the H-tree.

2. Computation data �ow (the violet arrow): we get the input
data from the activation bu�ers and send the data to the input reg-
isters (iRegs). Considering the limited DAC resolution and WL/BL
parallelism, we adopt multiple cycles to complete the whole com-
putation of the input activation, while the crossbar needs to keep
activated and the iRegs need to remain unchanged.
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3. Output data �ow (the green arrow): The output data �ow is
similar to the input data �ow. We adopt the joint module to merge
the results of PEs �rstly, then send the merged PE results to the
output bu�er. For the next computation, we utilize data forwarding
units to transfer data in the output bu�er to other tiles.

5.3 Hardware Performance Estimation
Based on the architecture and data �ow construction, the pro-

posed modeling tool, MNSIM 2.0, estimates hardware performance in
the following �ve levels, i.e., memristor crossbar, analog and digital
conversion interface, digital circuit, bu�er, and NoC.

Memristor crossbar: For crossbar modeling, users can provide
information from three aspects, i.e., crossbar level, device level, and
technology nodes. Here we use area estimation as an example to il-
lustrate the crossbar modeling. MNSIM 2.0 gives four area estimation
methods from di�erent levels:

-10A_�A40=

8>>>>><
>>>>>:

*B4A 0B ⌧8E4= +0;D4
G10A2 ⇥ G10AA ⇥ ⇡4E824_�A40
G10A2 ⇥ G10AA ⇥ 3(, /! + 1)� 2 1T1R
G10A2 ⇥ G10AA ⇥ 4� 2 0T1R

(7)

1) 1' and 0) 1' represent MOSFET-accessed and cross-point struc-
ture,, /! is the transistor technology parameter, � is the memris-
tor technology node, and G10A2 and G10AA denote the number of
columns and rows of the crossbar, respectively.

Analog and digital conversion interface: In MNSIM 2.0, we
count the conversion times of ADCs and DACs and give the analog
and digital conversion interface estimation results based on the
hardware parameters of ADCs and DACs. Like crossbars, users can
provide the speci�c hardware parameters to con�gure ADCs and
DACs. Meanwhile, MNSIM 2.0 also provides some latest DAC and
ADC designs with di�erent resolutions as default con�gurations.

Digital circuit: Besides the MVM part, digital modules are also
essential for CNNmodels in the PIM system. Figure 4 presents some
common digital modules in our PIM architecture, such as address
decoders, H-trees, pooling modules, data forwarding units, etc. To
estimate the performance of these digital modules, MNSIM 2.0 utilizes
Synopsys Design Compilerr to synthesize digital circuit modules
at TSMC 65=< technology node. And for digital circuit modules
in other technology nodes, we use the scaling down estimation
method to generate simulation results from 65=< results.

Bu�er: As shown in Figure 4, we utilize on-chip bu�ers to store
the input activation, interconnect data, tile-level output, and so
on. In MNSIM 2.0, we use CACTI [28] and the method of �tting and
looking up table to estimate read and write overhead of the bu�ers,
based on user-speci�ed bu�er con�guration.

NoC: In our PIM architecture, the NoC structure is used to merge
the results of sub-MVM blocks and transfer the intermediate data to
the next layer. In MNSIM 2.0, we use Manhattan distance to describe
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Figure 6: Accuracy evaluation of PIM-based CNN [34].

these two parts and estimate the NoC latency. We estimate the
power and area of the NoC according to [16, 23].

5.4 Accuracy Estimation
In addition to the hardware performance estimation, accuracy

estimation is also one crucial part of our simulator. As shown in
Figure 6, we realize the accuracy evaluation by integrating hard-
ware parameters and non-ideal factors into the calculation process
of each layer based on the PyTorch framework. Firstly, considering
the size of the crossbars, memristor precision, and DAC resolution,
we divide the weight matrices and the input feature data into sub-
matrices and sub-vectors, respectively. Secondly, to analyze the
impact of non-ideal factors on the accuracy, we update values in
each according to the e�ects of the non-ideal factors. Up to now,
MNSIM 2.0 supports two non-ideal factors of the memristor, i.e.,
stuck at fault (SAF) and resistance variations, which is described
in Section 3, and more non-ideal factors will be supported in the
future. Thirdly, we perform MVM in the updated sub-matrix to
get intermediate results and quantize the intermediate results ac-
cording to the ADC resolution and the user-speci�ed quantization
scheme. Finally, we accumulate the quantized intermediate results
to obtain the �nal output of this layer, which is mentioned in Sec-
tion 4.1. Performing these steps layer by layer, we can obtain the
�nal accuracy simulation results in a short time.

6 EXPERIMENTS
6.1 Experiment Setup

To evaluate the proposed training framework and our simulator,
we train several typical CNN models, i.e., LeNet [18], modi�ed
VGG-8 [15], and ResNet [11], on the Cifar-10 dataset [14] as our
benchmark. As for the hardware parameters used in our simulator,
we refer to [29] to generate the memristors, and con�gure the
power, area, latency, and resolution of the ADCs and DACs based
on [5, 8, 17, 24, 26]. As for the digital parts, we model them at TSMC
65=< technology node with frequency of 500MHz.

6.2 Performance Comparison Using MNSIM 2.0
To evaluate the in�uence of ADC resolution, we use MNSIM 2.0

to simulate the system performance under di�erent ADC con�gu-
rations. The CNN accuracy and hardware performance results are
shown in Table 1. The results demonstrate that the CNN comput-
ing power drops dramatically when the ADC resolution becomes
lower. However, ADCs with lower resolution also bring higher
quantization error, which will destroy the CNN function. Besides,
experiment results show that di�erent network models have dif-
ferent tolerance to the quantization error. Therefore, architecture
designers should analyze the trade-o� and select the appropriate



Table 1: Latency (!,<B), power (%,, ), and accuracy (�,%) un-
der di�erent ADC resolutions (') using single bit memristor
devices. ⌫ is the baseline [34]

'
LeNet VGG-8 ResNet-20

! % � ! % � ! % �
B - - 76.27 - - 91.64 - - 91.18
4 0.26 0.34 10.81 10.45 9.67 10.81 2.82 11.97 10.81
6 0.28 0.54 49.45 11.56 15.44 53.91 3.06 19.33 10.81
8 0.29 1.55 72.72 12.32 43.67 90.18 3.22 55.32 87.81
10 0.28 2.62 76.63 12.29 73.76 91.45 3.20 93.68 88.91

Table 2: Accuracy and energy consumption under di�erent
situations using 4-bit memristor devices (� and , are the
precision of activations and weights) [27]

LeNet VGG-8-BN ResNet-18

Accuracy Energy/uJ Accuracy Energy/uJ Accuracy Energy/uJ

�oat baseline 0.7627 - 0.9336 - 0.8887 -

[3]

A8W4 0.7499 1.68 0.9308 2115.9 0.8785 19.8

A6W4 0.7463 0.41 0.9243 458.2 0.8756 4.52

A4W4 0.6375 0.15 0.1887 140.9 0.7412 1.56

Ours A4W4 0.7467 0.14 0.9286 138.8 0.8655 1.5

ADC resolution according to the algorithm models and hardware
performance constraints concurrently.

6.3 Training Framework Performance
Table 2 shows the performance of the proposed reliability-aware

training framework compared with existing work [3], which re-
duces energy consumption of ADCs while keeping the accuracy.
As shown in the last two rows, our training framework can achieve
⇠10% improvement on the test accuracy with the same quantization
constraints on weights and activation. Besides, while achieving a
comparable accuracy, the proposed training framework can reduce
the ADC resolution by 2 bits and reduce ⇠70% energy consumption
(equivalent to 3.4⇥ energy e�ciency improvement). It should be
noted that the energy e�ciency is also improved by the energy-
aware weight regularization method introduced in [27].

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a reliability-aware training frame-

work and a behavior-level modeling framework (MNSIM 2.0) for
PIM accelerators. The training framework contains network split-
ting/merging analysis and a PIM-based non-uniform activation
quantization scheme to reduce the interface costs. And MNSIM 2.0
realizes the hardware performance modeling within a short time.
Experiments based on MNSIM 2.0 show that the reliability-aware
training framework can improve 3.4⇥ energy e�ciency of PIM ac-
celerators with little accuracy loss. The equivalent energy e�ciency
is 9.02 TOPS/W, nearly 2.6⇠4.2⇥ compared with existing work. In
the future, we will integrate MNSIM 2.0 with other circuit-level sim-
ulators to achieve more accurate simulation results and support
more hardware parameters.
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